所检测的气体包括几乎所有碳氢化合物。环保意义与维护SCR系统的主要目的是通过高效处理,降低柴油发动机排放的污染物,从而保护环境。因此,当SCR灯亮起时,应尽快诊断并修复,以确保系统的稳定运行,防止排放超标带来的环境影响。工作前后应当用2%碳酸钠溶液嗽口。Na+主要存在于细胞外液,是维持细胞外液渗透压和容量的重要成分。
可燃气体探测器可以检测哪些气体?
可燃气体检测仪按照不同的检测原理,可以检测不同的气体。
催化燃烧原理:催化燃烧式气体传感器是利用催化燃烧的热效应原理,在一定温度条件下,可燃气体在检测元件载体表面及催化剂的作用下发生无焰燃烧,输出一个与可燃气体浓度成正比的电信号。通过测量铂丝的电阻变化的大小,就知道可燃性气体的浓度。主要用于可燃性气体的检测,具有输出信号线性好,指数可靠,价格便宜,不会与其他非可燃性气体发生交叉感染。所检测的气体包括几乎所有碳氢化合物。
半导体原理:半导体气体传感器是利用半导体气敏元件作为敏感元件的气体传感器,是最常见的气体传感器,广泛应用于家庭和工厂的可燃气体泄露检测装置,适用于甲烷、天然气、液化气、氢气等的检测。
各种气体检测仪
货车scr灯亮是什么意思?
SCR灯亮起:揭示的系统故障
货车上的选择性催化还原(SCR)系统故障时,SCR灯会亮起。这是一种关键技术,旨在通过尿素分解来降低柴油发动机排放的氮氧化物。其工作原理是:在高温时,尿素喷射单元将尿素水溶液注入排气管,尿素分解产生氨,氨在SCR催化剂作用下与尾气中的氮氧化物结合,生成氮气和水,从而减少NOx排放。
故障分析
当遇到SCR灯亮起,可能有几种原因。首要的是传感器的损坏。作为系统的核心监测组件,传感器的失效会导致氮氧化物含量的监测失准,进而触发警告灯。其次,传感器连接器的接触不良也可能触发此现象。虚接会阻碍数据传输,影响系统正常运行。此外,线路短路或故障同样是触发灯亮的重要因素,因为线路故障会中断系统的正常控制信号。
环保意义与维护
SCR系统的主要目的是通过高效处理,降低柴油发动机排放的污染物,从而保护环境。尿素分解技术有效地减少了NOx的排放,为绿色出行做出了贡献。因此,当SCR灯亮起时,应尽快诊断并修复,以确保系统的稳定运行,防止排放超标带来的环境影响。
二氧化硫的吸收?
二氧化硫的吸收方法:1、个人防护:操作工人可以将数层纱布用饱和碳酸钠溶液及甘油湿润后夹在纱布口罩中以吸收SO2。工作前后应当用2%碳酸钠溶液嗽口。
2、亚铵法:采用亚铵法处理SO2 是用氨水吸收SO2,副产品亚铵。虽然亚铵法技术较成熟,但产生的副产品是液体状态的亚铵,产品的贮存运输都较困难,只适用于有氨源的小型冶炼厂。
3、亚硫酸钠法:中小型的冶炼厂可采用亚硫酸钠法进行烟气脱硫。亚硫酸钠法是利用烧碱或纯碱吸收SO2,
同时产生副产品亚硫酸钠。例如,上海冶炼厂就采用此法处理烟气。亚硫酸钠法工艺简单,操作方便,系统阻力小,投资和操作费用低。脱硫效率高达95
%左右。但需消耗纯碱和烧碱,每吨无水亚硫酸钠消耗纯碱0. 8 t,烧碱0. 1 t。副产品亚硫酸钠用途有限,因此不能普遍采用。
常见的植物吸收二氧化硫:
杜鹃:它是抗二氧化硫等污染较理想的花木。如石岩杜鹃距二氧化硫污染源300米多的地方也能正常萌芽抽枝。
木槿:它能吸收二氧化硫、氯气、氯化氢等有毒气体。它在距氟污染源150米的地方亦能正常生长。
山茶:花它能抗御二氧化硫、氯化氢、铬酸和硝酸烟雾等有害物质的侵害,对大气有净化作用。
紫薇:它对二氧化硫、氯化氢、氯气、氟化氢等有毒气体抗性较强。每公斤干叶能吸收10克左右。
米兰:它能吸收大气中的二氧化硫和氯气。在含IPPM氯气的空气中熏4小时,1公斤干叶吸氯量为0.0048克。
梅花:它对环境中的二氧化硫、氟化氢、硫化氢、乙烯、苯、醛等的污染,都能有监测能力。一旦环境中出现硫化物,它的叶片上就会出现斑纹,甚至枯黄脱落,这便是向人们发出的警报。
二氧化硫(化学式SO2是最常见的硫氧化物。大气主要污染物之一。火山爆发时会喷出该气体,在许多工业过程中也会产生二氧化硫。由于煤和石油通常都含有硫化合物,因此燃烧时会生成二氧化硫。当二氧化硫溶于水中,会形成亚硫酸(酸雨的主要成分)。若把二氧化硫进一步氧化,通常在催化剂存在下,便会迅速高效生成硫酸。这就是对使用这些燃料作为能源的环境效果的担心的原因之一。
生活中与催化剂有关的化学现象有哪些?谢谢!
1、口红:女士使用的口红中有油、蜂蜡、二氧化钛和染料,染料由两种化学物质组成,一种是荧光素、一种是溴。2、口香糖:它是从异戊间二烯衍生出来的胶浆制成的,此外,口香糖中还含有其他化学成分,有甜味剂、香味剂和软化剂。口香糖能吹出泡泡是因为含有丁基橡胶的原因。
3、防晒霜:有两种:一种可以反射阳光,另一种是在光线到达皮肤之前把它吸收;第一种被称为“物理防晒”第二种是“化学防晒”,化学防晒霜中含有氨基苯酸,可以吸收电磁辐射,并将其转化为没有危害的其他能量形式。
4、除去皱纹:面霜中含有“阿尔法氢氧酸”和“贝塔氢氧酸”的化合物,它可以从水果和牛奶中提取。可以溶解人体的皮肤死细胞上附着的脂肪,这种脂肪被消灭,新的皮肤产生,皱纹就减少了。
5.由重金属造成的环境污染称为重金属污染。重金属污染有时会造成很大的危害,例如,日本发生的水俣病(汞污染)和骨痛病(镉污染)等公害病,都是由重金属污染引起的。
6. 有一种令人发笑的气体。它是氮气的亲属之一。叫一氧化二氮,绰号叫“笑气”。“笑气”作为麻醉剂,却很快进入医院,并被长期使用着。麻醉剂的使用,使许多病人从死神手中解脱了出来。
7. 做饼干、蛋糕和面包等食品时,常用另外一种发酵粉。这种发酵粉和酵母菌毫不相干,实际上是化学疏松剂。它包含的两种化学药粉——碳酸氢钠和磷酸二氢钠,放到湿面里,就发生化学变化,冒出二氧化碳气来,使食品里产生许多小洞洞。
8.炸油条的生面里预先揉进了食碱和明矾。早点铺师傅说的“一碱二矾三盐”指的是,每七斤面配上一两食碱、二两明矾和三两盐,便成炸油条的生面了。这三种化学角色各有各的作用:盐使面有咸味并变得柔韧,明矾是硫酸铝钾,具有酸性,在滚烫的油锅里,它和食碱起化学反应,生成大量二氧化碳气泡,气泡受热急剧膨胀,使油条迅速胀大。一两食碱和二两明矾可以生成约14升二氧化碳气,沸油二百多度的高温,又使它的体积膨胀一倍多,所以,新炸的油条疏松多孔。
9 .特殊的玻璃叫做“光致变色”玻璃。它在制造过程中,预先掺进了对光敏感的物质,如氯化银、澳化银(统称卤化银)等,还有少量氧化铜催化剂。眼镜片从没有颜色变成浅灰、茶褐色,再从黑眼镜变回到音通眼镜,都是卤化银变的魔术”。
10.食盐味咸,常用来调味,或腌制鱼肉、蛋和蔬菜等,是一种用量最多、最广的调味品,素称“百味之王”。人们每天都要吃一定量的盐(一般成年人每天吃6g到15g食盐就足够了),其原因一是增加口味,二则是人体机能的需要。Na+主要存在于细胞外液,是维持细胞外液渗透压和容量的重要成分。动物血液中盐浓度是恒定的,盐分的过多流失或补充不够就会增大兴奋性,于是发生无力和颤抖,最后导致动物后腿麻痹,直至死亡。美国科学家泰勒亲身体会了吃无盐食物的过程,起初是出汗增加,食欲消失,5天后感到十分疲惫,到第8~9天则感到肌肉疼痛和僵硬,继而发生失眠和肌肉抽搐,后因情况更为严重而被迫终止实验。当然,摄取过多的食盐,就会把水分从细胞中吸收回体液中,使机体因缺水而发烧。
11.把空气中的氮气转化为可被植物吸收的氮的化合物的过程,称为氮的固定。自然界中氮的固定通常有两种:一种是闪电时空气中的氮气和氧气化合物生一氧化氮,一氧化氮进一步与氧气化合生成二氧化氮,二氧化氮被水吸收变成硝酸在下雨时降落到地面。另一种固氮的方式是利用植物的根瘤菌,根瘤菌是一种细菌,能使豆科植物的根部形成根瘤,在自然条件下,它能把空气中的氮气转化为含氮的化合物,供植物利用。“种豆子不上肥,连种几年地更肥”就是讲的这个道理。
12.松花皮蛋是我国人民的传统食品。由于它风味独特、口感极好、保质期长,很受人们喜爱。同学们知道吗?其实,将鲜蛋加工成松花皮蛋的过程是一种比较复杂的化学过程。灰料中的强碱(氢氧化钠、氢氧化钾)从蛋壳外渗透到蛋黄和蛋清中,与其中的蛋白质作用,致使蛋白质分解、凝固并放出少量的硫化氢气体。同时,渗入的碱进一步与蛋白质分解出的氨基酸发生中和反应,生成的盐的晶体以漂亮的外形凝结在蛋清中,像一朵一朵的“松花”。而硫化氢气体则与蛋黄和蛋清中的矿物质作用生成各种硫化物,于是蛋黄、蛋清的颜色发生变化,蛋黄呈墨绿色,蛋清呈特殊的茶绿色。食盐可使皮蛋收缩离壳,增加口感和防腐等。加入的铅丹可催熟皮蛋,促使皮蛋收缩离壳。而茶叶中的单宁和芳香油,可使蛋白质凝固着色和增加皮蛋的风味。
附:生活中的化学知识要点
一、关于物质燃烧
1.点燃两支高度不同的蜡烛,用一个烧杯罩住,高的蜡烛先熄灭,原因是生成的二氧化碳气体温度较高,上升,然后由上至下充满整个瓶内,因此当室内发生火灾时应用湿毛巾堵住口鼻弯腰逃离火灾区,在森林火灾逃生的办法是:用湿毛巾堵往口鼻逆风而逃
2.为了保证安全问题,在庆典活动中可以用氦气充灌气球,不能用氢气。
3.煤气中毒是由一氧化碳引起的,防止煤气中毒的有效方法是注意通风,为防止煤气泄漏,我们常在煤气中加入具有特殊气味的硫醇(C2H5SH)以便于知道煤气发生泄漏,发现有煤气泄漏时要及时打开门窗,关闭煤气阀门,(不能开灯,打电话,用电风扇等因这些行为会产生火花从而发生煤气爆炸),发现有人煤气中毒后要注意把病人移到通风处,进行人工呼吸,必要时送医院救治。
4.蜡烛一吹即灭是因为冷空气使蜡烛温度下降至其着火点以下,用扇扇炉火越来越旺是因为提供了足够的氧气,增加的煤与氧气接触的面积。
5.西气东输的气体是天然气,主要成分是甲烷,煤矿“瓦斯”爆炸的主要气体也是甲烷,其原因是矿井中通风不良,使甲烷与空气混合而达到爆炸极限经点燃发生爆炸,所以为防止煤矿爆炸要常常保持通风,严禁烟火。
6.灯泡内往往会有少量的红磷,主要是脱去灯内的氧气
7.发生火灾时要用湿毛巾堵往口鼻是为了防止吸入有毒气体。如遇到毒气(含氯气、盐酸,硫化氢、氨气)泄漏时,我们也要用湿毛巾堵往口鼻,然后逃往地势较高的地方。
二、关于食品
1.把新鲜鸡蛋放在石灰水中可以保鲜,是因为鸡蛋呼出的二氧化碳与石灰水反应生成了碳酸钙堵往了鸡蛋表面的微孔,防止氧化而变质。
2.为了防止食品受潮和变质或变形,常在食品袋内充的气体的二氧化碳或氮气;或在袋内放干燥剂:生石灰、氯化钙主要是吸水,铁主在是吸收氧气和水;或采取真空包装。
3.鱼鳔内的气体主要有二氧化碳和氧气
4.做镘头时加些纯碱主要为了中和面粉发酵时产生的酸,生成的二氧化碳能使面包疏松多孔。
5.蔬菜中残留的农药可以用碱性物质泡,可降低农药的药性
6.皮蛋的涩味可以加点食醋去除
7.冰箱的异味可用活性炭除去,利用了活性炭的吸附性。
8.铝壶上的水垢(主要成分是碳酸钙和氢氧化镁),可用盐酸或食醋除去
三、环境问题
1.酸雨是由于氮的氧化物和硫的氧化物(如SO2、NO2)的大量排放引起,酸雨的危害有:腐蚀建筑物,影响作物生长,污染河流,影响人体健康,造成土地酸化。减少酸雨的措施:开成新能源,少用煤作燃料,煤进行脱硫技术。
2.汽车尾气中含有CO,NO,SO2等,治理的方法是:改变发动机结构,使燃料充分燃烧;在排气管上装上一个催化转化装置,使CO、NO转化为无毒的N2和二氧化碳。控制城市汽车尾气对空气污染的方法有:(1)开发新能源,(2)使用电动车
3.防止水污染的方法:
(1)加强对水质的监测
(2)工业三废要经过处理后排放
(3) 合理使用农药和化肥
(4)禁止使用含磷洗衣粉
(5)加强水土保护,植树造林
节约用水的方法:水的二次利用(洗米水去浇花),随手关水龙头,低灌技术,工业水的二次利用。
4.温室效应
由于煤、石油燃料的使用,空气中的二氧化碳含量不断增加。不利影响是:全球气候变热,土地沙漠化,两极冰川熔化;可采取的措施是:植树造林,禁止乱砍滥伐;减少化石燃料的燃烧,更多地利用太阳能,风能,地能,核能,水能等(我们可以节约用纸,节约能源,多栽树,随手关灯)
生石灰浸在水中成熟石灰,熟石灰涂在上干后成洁白坚硬的碳酸钙,覆盖了泥土的黄色,房子才显得整洁明亮。化学炼出钢铁,我们才有铁制品使用。化学加工石油,我们才能用上轻便的塑料。化学锻烧陶土,才能使房屋有漂亮的瓷砖表面。
用二氧化碳加压溶解制爽口的汽水,用小苏打做可口的饼干。用腐蚀性药品清除管道阻塞。生活中,化学的频繁使用不是举例能举完的,它已与生活紧密联系在一起。
催化转化器劣化诊断是什么‘
催化转化器劣化诊断是关键的汽车技术,用于检测三元催化器的状态。三元催化器作为排放控制的核心组件,其性能劣化会严重影响汽车排放。后氧传感器是判断催化剂老化失效的主要手段,当转化效率下降时,后氧传感器会记录到显著的电压变化,此时电控系统会通过点亮OBD报警灯提醒更换催化器。因此,定期进行催化转化器劣化诊断至关重要,以保持汽车排放性能和行驶安全。
诊断方法主要依赖于检测后氧传感器的信号变化。当三元催化器性能下降,后氧传感器会反映出这一变化,电控系统会通过OBD报警灯发出信号。为了精确诊断,需要使用专业的汽车诊断工具对排放系统进行全面检测,确保诊断结果的准确性和可靠性。此外,催化转化器劣化诊断还能监控其他排放控制装置,双重保障汽车的排放性能和行驶安全。
总的来说,催化转化器劣化诊断是汽车技术的重要组成部分,它确保了三元催化器的健康状态,维护了汽车的排放性能和行驶安全。在汽车维护中,定期进行这项诊断是不可或缺的。通过专业的设备和技术,我们可以有效监测和解决问题,确保汽车的排放标准和行驶性能稳定。
催化转化器劣化诊断的重要性不容忽视,它为保证汽车排放性能和行驶安全提供了有效保障。在汽车维护中,我们务必重视这一技术,通过专业手段确保催化器的工作效率,从而确保汽车的环保性能和驾驶安全。
二氧化硫的吸收?
二氧化硫的吸收方法:1、个人防护:操作工人可以将数层纱布用饱和碳酸钠溶液及甘油湿润后夹在纱布口罩中以吸收SO2。工作前后应当用2%碳酸钠溶液嗽口。
2、亚铵法:采用亚铵法处理SO2 是用氨水吸收SO2,副产品亚铵。虽然亚铵法技术较成熟,但产生的副产品是液体状态的亚铵,产品的贮存运输都较困难,只适用于有氨源的小型冶炼厂。
3、亚硫酸钠法:中小型的冶炼厂可采用亚硫酸钠法进行烟气脱硫。亚硫酸钠法是利用烧碱或纯碱吸收SO2,
同时产生副产品亚硫酸钠。例如,上海冶炼厂就采用此法处理烟气。亚硫酸钠法工艺简单,操作方便,系统阻力小,投资和操作费用低。脱硫效率高达95
%左右。但需消耗纯碱和烧碱,每吨无水亚硫酸钠消耗纯碱0. 8 t,烧碱0. 1 t。副产品亚硫酸钠用途有限,因此不能普遍采用。
常见的植物吸收二氧化硫:
杜鹃:它是抗二氧化硫等污染较理想的花木。如石岩杜鹃距二氧化硫污染源300米多的地方也能正常萌芽抽枝。
木槿:它能吸收二氧化硫、氯气、氯化氢等有毒气体。它在距氟污染源150米的地方亦能正常生长。
山茶:花它能抗御二氧化硫、氯化氢、铬酸和硝酸烟雾等有害物质的侵害,对大气有净化作用。
紫薇:它对二氧化硫、氯化氢、氯气、氟化氢等有毒气体抗性较强。每公斤干叶能吸收10克左右。
米兰:它能吸收大气中的二氧化硫和氯气。在含IPPM氯气的空气中熏4小时,1公斤干叶吸氯量为0.0048克。
梅花:它对环境中的二氧化硫、氟化氢、硫化氢、乙烯、苯、醛等的污染,都能有监测能力。一旦环境中出现硫化物,它的叶片上就会出现斑纹,甚至枯黄脱落,这便是向人们发出的警报。
二氧化硫(化学式SO2是最常见的硫氧化物。大气主要污染物之一。火山爆发时会喷出该气体,在许多工业过程中也会产生二氧化硫。由于煤和石油通常都含有硫化合物,因此燃烧时会生成二氧化硫。当二氧化硫溶于水中,会形成亚硫酸(酸雨的主要成分)。若把二氧化硫进一步氧化,通常在催化剂存在下,便会迅速高效生成硫酸。这就是对使用这些燃料作为能源的环境效果的担心的原因之一。
电化学传感器原理?
电化学传感器技术及原理应用发表时间:2006-8-11
基本原理
化学传感器主要由两部分组成:识别系统;传导或转换系统。
识别系统反待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。
化学传感器在环境与卫生监测中的应用
(一) 空气检验
1、湿度传感器 湿度是空气环境的一个重要指标,空气的湿度与人体蒸发热之间有着密切关系,高温高湿时,由于人体水分蒸发困难而感到闷热,低温高湿时,人体散热过程剧烈,容易引起感冒和冻伤。人体最适宜的气温是18~22℃,相对湿度为35%~65%RH。
在环境与卫生监测中,常用于湿球温湿度计、手摇湿温度计和通风湿温度计等仪器测定空气湿度。近年来,大量文献报道用传感器测定空气湿度。用于测定相对湿度的涂覆压电石英晶体用传感器,通过光刻和化学蚀刻技术制成小型石英夺电晶体,在AT切割的10MHZ石英晶体上涂有4种物质,对湿度具有较高的质量敏感性.该晶体是振荡电路中的共振器,其频率随质量变化,选择适当涂层,该传感器可用于测定不同气体的相对湿度.该传感器的灵敏度、响应线性、响应时间、选择性、滞后现象和使用寿命等孝怪癖于涂层化学物质的性质。1986年,德国ErbenUwe[提出了一种测定湿度用的传感器,并获得专利。该传感器采用以硅为基体的金属-绝缘体-半导体(MIS)型结构。在MIS型结构中涂有二氧化硅和敏湿层,敏湿层的材料包含有金属氧化物、氧化物以及低极性组分的聚合物。敏湿材料的吸水量与每湿材料的相对介电常数的变化有关,该传感器可用准表态和支态两种方法进行测定,不过前者比后者更为方便省力,在空气调节系统、建筑工地和日常生活环境中都能监测、控制和调节湿度。
我国科技工作者采用最新研制的氧化钽薄膜湿敏电容,推出一种稳定性好,调节十分方便的通用湿度控制器。这种传感器可用于恒湿箱、计算机房、防湿机等许多场合的空气湿度监测,是一种性能价格比很高的通用型湿度传感器,有人利用磷酸盐涂膜的感湿性研制出性能十分可靠的湿度传感器。它的主要电极为不锈钢线材,直径0.4~1.0mm,表层涂有磷酸薄膜,在膜上再旋绕一层镀金丝作为主电极的对置电极,两电极间仅仅相隔一层20~50um厚的涂膜,距离大大小于一般的湿度传感器,响应速度得到提高,改变磷酸盐涂膜,又能制成特性不同的多种感湿元件。传感器工作期间,由于磷酸盐涂膜表面吸附水分而产生的离子在电极间来回运动,致使传导发生变化,从而显示感湿性。若对传感器元件加以交流负荷,则可借检测阻抗的变化测定出空气湿度。该传感器何种小,可封闭在注射器针关内,利用针尖可插入狭窄的被测处,使用方便,检测迅速,还可用于露点测定。
现在日本制造销售湿度传感器及湿度测量控制仪器的公司已超过30家。温度传感器数量大,品种多,使用的感湿材料有电解质陶瓷和有机高分子膜等,范围甚广,大部分检测精度高,结构简单,具有超小型化和集成化的特点。
2、氧化氮传感器 氧化氮是氮的各种氧化物所组成的气体混合物的总称,常以NOX表示。在氧化氮中,不同形式的氧化氮化学稳定性不同,空气中常风的是化学性质相对稳定的一氧化氮和二氧化氮,它们在卫生学上的意义显得较其它形式氧化氮更为重要。在环境分析中,氧化氮一般指一氧化氮二氧化氮。
我国监测氧化氮的标准方法是盐酸萘乙二胺比色法,方法灵敏度为0.25ug/5ml,方法转换系数受吸收液组成、二氧化氮浓度、采气速度、吸收管结构、共存离子及温度等多种因素的影响,目前沿末完全统一。传感器测定是近年发慌起来的新方法。
文献报道,用交指型栅极电极场效应晶体管的微电子集成电路与化学活性电子束蒸镀酞花青铜薄膜相结合,获得了新型气体敏感微传感器,可选择性检测mg/m3级二氧化氮和二惜内基甲基膦酸盐(DIMP)。它利用电压脉冲激发传感器,测量时域和频域响应,测定的峰形与归一化差分傅立叶变换频谱有关,能清晰地区分二氧化氮和DIMP的响应,每个峰面积可以相应地反应出传感器对特定气体浓度的灵敏度,科技人员研究了工作频率600MHZ的高频表面声波(SAW)气敏装置。该装置包括三个分离的SAW延迟线,它们是振荡电路的频率测定元件,在其表面涂了一层有机膜,作为气体吸附剂,该膜为1~15nm厚酞花青铅膜或由可溶酞花青铁衍生物组成的LB(Langmuir-Blodgett)膜。在吸附过程中,薄膜质量增加,引起表面波速的降低,随即引起振荡频率的降低,达到测定二氧化氮浓度的目的。
锡在高于熔点的温度下沉积,而镉在室温下沉积,利用加热蒸镀新方法可制得掺有1%~6%镉的二氧化锡薄膜。在520℃下缓慢氧化该膜,便形成了二氧化锡和氧化镉的多晶体,薄膜表面对低浓度氧化氮和二氧化氮有吸附。在300℃条件下,该膜对10g/m3的一氧化氮和二氧化氮具有最高灵敏度,按电导率相对变化百分比计,其值分别为10000%和400%,相同条件下,对空气中0.01%的一氧化碳、甲烷、丁烷和氢气的灵敏度都在300%以下,这种基于掺镉二氧化锡薄膜组成的传感器,对氧化氮和二氧化氮的测定不仅灵敏度高,而且具有很好的选择性。半导体本花青膜的电导率对电子受体气体具有极佳的灵敏度,这一特点给人们提供了制造廉价、低能耗、体积小的二氧化氮传感器系统的理论基础。但是,这种膜用于传感器也有一缺点,如响应慢,在潮湿条件下,响应呈可逆地降低等。为此,WilsonA等人研制了一种微处理控制传感系统。该系统通过控制取样和传感器操作条件,获得可再现的动力学过程,从而把上述缺点带来的影响降低到了最低点。
3、硫化氢气体传感器 硫化氢是一种无色、具有特殊腐蛋臭味的可燃气体,具有刺激性和窒息性,对人体有较大危害。目前大多用比色法和气相色谱法测定空气中硫化氢。
对含量常常低至mg/m3级的空气污染物进行测定是气体传感器的一项主要应用,但在短时期内半导体气体传感器还不能满足监测某些污染气体灵敏度和选择性要求。他提出利用掺银薄膜传感器监测实验室和城市空气中的硫化氢。该传感器阵列由四个传感器构成,通过基于库化滴定的通用分析装置和半导体气体传感器阵列的信号,同时记录二氧化硫和硫化氢浓度,实践表明,在150℃下以恒温方式盍的掺银薄膜传感器用于监测城市空气中的硫化氢含量,效果良好。Yomogoe N对半导体气体传感器进行了改进和研究,克服了它检测硫化氢等气体的不足之处。他通过控制能影响接收和转换功能的基本因素,改进了二氧化锡半导体气体传感器的传感性能。他发现,转换功能与元件的微观结构密切相关,如与二氧化锡的粒度大小(D)和表面空间电荷层的厚度(L)相关。当D≤2L时,传感器的灵敏度大幅度提高。在二氧化锡表面引入其它受体,极大地改善了传感器的受体功能,特别是用银和钯作助催化剂,在空气中形成的氧化物与二所化锡表面相互作用,产生缺电子实质问题电荷,大大提高了检测气体的灵敏度。用CaO-SnO2元件能十分灵敏地检测空气中的硫化氢。
4、二氧化硫传感器 二氧化硫是污染空气的主要物质之一,检测空气中二氧化硫尝试是空气检验的一项经常性工作。应用传感器监测二氧化硫。从缩短检测时间到降低检出限,都显示出极大的优越性。
利用固体聚合物作离子交换膜,膜的一边含对电极和参比电极的内部电解液,另一边插入铂电极,组成一种二氧化硫传感器。该传感器安装在流通池中,在0.65V下氧化二氧化硫。批示出二氧化硫的量。该传感装置电流灵敏度高。响应时间短,稳定性好,本底噪音低,线性范围达0.2mmol/L,检出限为8*10-6mmol/L,信噪比为3。该传感器不仅可以测定空气中的二氧化硫,还可用于测定低电导率液体中的二氧化硫。有机改性硅酸盐薄膜二氧化硫气体传感器的气敏涂层是利用溶胶工艺和自旋技术制作的,对二氧化硫的测定具有良好的重现性和可逆性,响应时间不到20S,对其它气体的交感小,受温度和湿度影响小。中国科学院长春应用化学研究所薛祚霖等人研制成功一种检测范围宽广的小型二氧化硫浓度传感器,利用它可以装配成何种小、重量轻、价格便宜的拾式二氧化硫气体浓度检测仪器。它可用于现场直接检测二氧化硫气体的浓度,不需要单独采样。该传感器采用控制电们电解原理,待测气体在传感器的工作电极上一定控制电位下发生氧化反应,当电位控制足够正且电极的催化活性足够高时,氧化反应进行得很快,过程的总速度由二氧化硫扩散步骤所决定,产生的信号电流与二氧化硫浓度成正比。这一传感器响应快速,响应时间小于30S。在宽广的二氧化硫浓度范围内,具有良好线性关系,线性误差<±2%,响应关系的直线通过坐标原点。因此可以采用一点法标定传感器。正确选择催剂和控制电位,可避免大多数气体物质的干扰,而且不需要干扰气过滤器,既改善了传感器的性能,又简化了仪器的结构。该传感器用188g/m3二氧化硫气体,测定偏差<2%。低浓度标准气体标定的传感器用来测定高浓度气体,能获得如此准确的结果,可见其检测准确度是令人满意的.